Gasto volumetrico, Teorema de Bernoulu, Ecuación de continuidad, teorema de torricelli, Temperatura, Escalas termométricas, Dilatación

GASTO VOLUMETRICO
El caudal volumétrico o tasa de flujo de fluidos es el volumen de fluido que pasa por una superficie dada en un tiempo determinado. Usualmente es representado con la letra Q mayúscula.
Algunos ejemplos de medidas de caudal volumétrico son: los metros cúbicos por segundo (m3/s, en unidades básicas del Sistema Internacional) y el pie cúbico por segundo(cu ft/s en el sistema inglés de medidas).
Dada un área A, sobre la cual fluye un fluido a una velocidad uniforme v con un ángulo   desde la dirección perpendicular a A, la tasa del caudal volumétrico es:
En el caso de que el caudal sea perpendicular al área A, es decir, , la tasa del flujo volumétrico es:
de tiempo. Se denomina también caudal volumétrico o índice de flujo fluido, y que puede ser expresado en masa o en volumen. Caudalímetro: instrumento empleado para la medición del caudal de un fluido o gasto másico. Cálculo de caudal de agua en tubería: estimación del comportamiento de un flujo de tubería, basado en la ecuación de continuidad: En ecología, se denomina caudal al volumen de agua que arrastra un río, o cualquier otra corriente de agua para preservar los valores ecológicos en el cauce de la misma; se mide en metros cúbicos por segundo.
Asociado al término anterior:
Caudal sólido: denominación para el material arrastrado por la corriente de agua.
Caudal regularizado: determinación de la capacidad reguladora de un embalse.
Régimen fluvial: se refiere a las variaciones en el caudal de un río a lo largo de un año.
La ecuación de continuidad se puede expresar como:
ρ1.A1.V1 = ρ2.A2.V2
Cuando ρ1 = ρ2, que es el caso general tratándose de agua, y flujo en régimen permanente, se tiene:
[pic]
o de otra forma:
[pic](el caudal que entra es igual al que sale)
Donde:
• Q = caudal (metro cúbico por segundo; m3 / s)
• V = velocidad (m / s)
• A = área transversal del tubo de corriente o conducto (m2)





TEOREMA DE BERNOULLI

El principio de Bernoulli, también denominado ecuación de Bernoulli o Trinomio de Bernoulli, describe el comportamiento de un fluido en reposo moviéndose a lo largo de una corriente de agua. Fue expuesto por Daniel Bernoulli en su obra Hidrodinámica (1738) y expresa que en un fluido ideal (sin viscosidad ni rozamiento) en régimen de circulación por un conducto cerrado, la energía que posee el fluido permanece constante a lo largo de su recorrido. La energía de un fluido en cualquier momento consta de tres componentes:

  1. Cinética: es la energía debida a la velocidad que posea el fluido.

  2. Potencial gravitacional: es la energía debido a la altitud que un fluido posea.

  3. Energía de flujo: es la energía que un fluido contiene debido a la presión que posee.

La siguiente ecuación conocida como “Ecuación de Bernoulli” (Trinomio de Bernoulli) consta de estos mismos términos.

<br /><br /><br /><br /><br />
\frac{V^2 \rho}{2}+{P}+{\rho g z}=constante<br /><br /><br /><br /><br />

donde:

  • V = velocidad del fluido en la sección considerada.

  • \rho = densidad del fluido.

  • P = presión a lo largo de la línea de corriente.

  • g = aceleración gravitatoria

  • z = altura en la dirección de la gravedad desde una cota de referencia.

Para aplicar la ecuación se deben realizar los siguientes supuestos:

  • Viscosidad (fricción interna) = 0 Es decir, se considera que la línea de corriente sobre la cual se aplica se encuentra en una zona ‘no viscosa’ del fluido.

  • Caudal constante

  • Flujo incompresible, donde ρ es constante.

  • La ecuación se aplica a lo largo de una línea de corriente o en un flujo rotacional

Aunque el nombre de la ecuación se debe a Bernoulli, la forma arriba expuesta fue presentada en primer lugar por Leonhard Euler.

Un ejemplo de aplicación del principio lo encontramos en el flujo de agua en tubería.

Cada uno de los términos de esta ecuación tiene unidades de longitud, y a la vez representan formas distintas de energía; en hidráulica es común expresar la energía en términos de longitud, y se habla de altura o cabezal, esta última traducción del inglés head. Así en la ecuación de Bernoulli los términos suelen llamarse alturas o cabezales de velocidad, de presión y cabezal hidráulico, del inglés hydraulic head; el término z se suele agrupar con P/\gamma (donde \gamma = \rho  g ) para dar lugar a la llamada altura piezo métrica o también carga piezométrica.[editar]Características y consecuencia

 \overbrace{{V^2 \over 2 g}}^{\mbox{cabezal de velocidad}}+\overbrace{\underbrace{\frac{P}{\gamma}}_{\mbox{cabezal de presión}} + z}^{\mbox{altura o carga piezométrica}} = \overbrace{H}^{\mbox{Cabezal o Altura hidráulica}}

También podemos reescribir este principio en forma de suma de presiones multiplicando toda la ecuación por \gamma, de esta forma el término relativo a la velocidad se llamará presión dinámica, los términos de presión y altura se agrupan en la presión estática.

Esquema del efecto Venturi.

 \underbrace{\frac{\rho V^2}{2}}_{\mbox{presión dinámica}}+\overbrace{P+ \gamma z}^{\mbox{presión estática}}=constante

o escrita de otra manera más sencilla:

q+p=p_0

donde

  • q=\frac{\rho V^2}{2}

  • p=P+ \gamma z

  • p_0 es una constante-

Igualmente podemos escribir la misma ecuación como la suma de la energía cinética, la energía de flujo y la energía potencial gravitatoria por unidad de masa:

\overbrace{\frac{{V}^2}{2}}^{\mbox{energía cinética}}+\underbrace{\frac{P}{\rho}}_{\mbox{energía de flujo}}+\overbrace{g z}^{\mbox{energía potencial}} = constante







La ecuación de continuidad

La conservación de la masa de fluido a través de dos secciones (sean éstas A1 y A2) de un conducto (tubería) o tubo de corriente establece que la masa que entra es igual a la masa que sale.
Definición de tubo de corriente: superficie formada por las líneas de corriente. Corolario: solo hay flujo de corriente si V es diferente de 0.
La ecuación de continuidad se puede expresar como:
Cuando , que es el caso general tratándose de agua y flujo en régimen permanente, se tiene que:
o de otra forma:
 (el caudal que entra es igual al que sale)
donde:
  • Q = caudal ()
  • V = velocidad 
  • A = área transversal del tubo de corriente o conducto 
La ecuación anterior se cumple cuando entre dos secciones de la conducción no se acumula masa, es decir, siempre que el fluido sea incompresible y por lo tanto su densidad sea constante. Esta condición la satisfacen todos los líquidos y, particularmente, el agua.
En general, la geometría del conducto es conocida, por lo que el problema se reduce a estimar la velocidad media del fluido en una sección dada.


Teorema de Torricelli

El teorema de Torricelli o principio de Torricelli es una aplicación del principio de Bernoulli y estudia el flujo de un líquido contenido en un recipiente, a través de un pequeño orificio, bajo la acción de la gravedad

La velocidad de un líquido en una vasija abierta, por un orificio, es la que tendría un cuerpo cualquiera, cayendo libremente en el vacío desde el nivel del líquido hasta el centro de gravedad del orificio.
Matemáticamente:
donde:
  •  es la velocidad teórica del líquido a la salida del orificio
  •  es la velocidad de aproximación o inicial.
  •  es la distancia desde la superficie del líquido al centro del orificio.
  •  es la aceleración de la gravedad
Para velocidades de aproximación bajas, la mayoría de los casos, la expresión anterior se transforma en:
donde:
  •  es la velocidad real media del líquido a la salida del orificio
  •  es el coeficiente de velocidad. Para cálculos preliminares en aberturas de pared delgada puede admitirse 0,95 en el caso más desfavorable.
tomando  =1
Experimentalmente se ha comprobado que la velocidad media de un chorro de un orificio de pared delgada, es un poco menor que la ideal, debido a la viscosidad del fluido y otros factores tales como la tensión superficial, de ahí el significado de este coeficiente de velocidad.


Temperatura

Temperatura
Es una magnitud escalar relacionada con la energía interna de un sistema termodinámico, definida por el principio cero de la termodinámica. Más específicamente, está relacionada directamente con la parte de la energía interna conocida como «energía cinética», que es la energía asociada a los movimientos de las partículas del sistema, sea en un sentido traslacional, rotacional, o en forma de vibraciones. A medida de que sea mayor la energía cinética de un sistema, se observa que éste se encuentra más «caliente»; es decir, que su temperatura es mayor.
En el caso de un sólido, los movimientos en cuestión resultan ser las vibraciones de las partículas en sus sitios dentro del sólido. En el caso de un gas ideal monoatómico se trata de los movimientos traslacionales de sus partículas (para los gases multiatómicos los movimientos rotacional y vibracional deben tomarse en cuenta también).
El desarrollo de técnicas para la medición de la temperatura ha pasado por un largo proceso histórico, ya que es necesario darle un valor numérico a una idea intuitiva como es lo frío o lo caliente.
La temperatura se mide con termómetros, los cuales pueden ser calibrados de acuerdo a una multitud de escalas que dan lugar a unidades de medición de la temperatura. En el Sistema Internacional de Unidades, la unidad de temperatura es el kelvin (K), y la escala correspondiente es la escala Kelvin o escala absoluta, que asocia el valor «cero kelvin» (0 K) al «cero absoluto», y se gradúa con un tamaño de grado igual al del grado Celsius. Sin embargo, fuera del ámbito científico el uso de otras escalas de temperatura es común. La escala más extendida es la escala Celsius, llamada «centígrada»; y, en mucha menor medida, y prácticamente solo en los Estados Unidos, la escala Fahrenheit. También se usa a veces la escala Rankine (°R) que establece su punto de referencia en el mismo punto de la escala Kelvin, el cero absoluto, pero con un tamaño de grado igual al de la Fahrenheit, y es usada únicamente en Estados Unidos, y solo en algunos campos de la ingeniería
Principio Cero de la Termodinámica
Este principio o ley cero, establece que existe una determinada propiedad denominada temperatura empírica θ, que es común para todos los estados de equilibrio termodinámico que se encuentren en equilibrio mutuo con uno dado.
En palabras llanas: «Si pones en contacto un objeto con menor temperatura con otro con mayor temperatura, ambos evolucionan hasta que sus temperaturas se igualan».
Tiene una gran importancia experimen
tal «pues permite construir instrumentos que midan la temperatura de un sistema» pero no resulta tan importante en el marco teórico de la termodinámica.
El equilibrio termodinámico de un sistema se define como la condición del mismo en el cual las variables empíricas usadas para definir o dar a conocer un estado del sistema (presión, volumen, campo eléctrico, polarización, magnetización, tensión lineal, tensión superficial, coordenadas en el plano x, y) no son dependientes del tiempo. El tiempo es un parámetro cinético, asociado a nivel microscópico; el cual a su vez está dentro de la físico química y no es parámetro debido a que a la termodinámica solo le interesa trabajar con un tiempo inicial y otro final. A dichas variables empíricas (experimentales) de un sistema se las conoce como coordenadas térmicas y dinámicas del sistema.
Este principio fundamental, aún siendo ampliamente aceptado, no fue formulado formalmente hasta después de haberse enunciado las otras tres leyes. De ahí que recibiese el nombre de principio cero.
La  temperatura tienen diferentes tipos de escala para obtener su medicion, los tipos de escala son:
KELVIN
El kelvin (antes llamado grado Kelvin),1 simbolizado como K, es la unidad de temperatura de la escala creada por William Thomson, Lord Kelvin, en el año 1848, sobre la base del grado Celsius, estableciendo el punto cero en el cero absoluto (−273,15 °C) y conservando la misma dimensión. Lord Kelvin, a sus 24 años introdujo la escala de temperatura termodinámica, y la unidad fue nombrada en su honor.
Se representa con la letra K, y nunca “°K”. Actualmente, su nombre no es el de “grados kelvin”, sino simplemente “kelvin”
Coincidiendo el incremento en un grado Celsius con el de un kelvin, su importancia radica en el 0 de la escala: la temperatura de 0 K es denominada ‘cero absoluto’ y corresponde al punto en el que las moléculas y átomos de un sistema tienen la mínima energía térmica posible. Ningún sistema macroscópico puede tener una temperatura inferior. A la temperatura medida en kelvin se le llama “temperatura absoluta”, y es la escala de temperaturas que se usa en ciencia, especialmente en trabajos de física o química.
Los Grados KELVIN también son utilizados en iluminación de fotografía, vídeo y cine se utilizan los kelvin como referencia de la temperatura de color. Cuando un cuerpo negro es calentado, emite luz de diferente color según la temperatura a la que se encuentra. De este modo, cada color se puede asociar a la temperatura a la que debería estar un cuerpo negro para emitir en ese color. Es necesario recalcar que la temperatura de color asociada a un cuerpo no está relacionada con su temperatura real. Por ejemplo, 1600 K es la temperatura de color correspondiente a la salida o puesta del sol. La temperatura del color de una lámpara de filamento de wolframio, tungsteno, corriente es de 2800 K. La temperatura de la luz utilizada en fotografía y artes gráficas es 5500 K (para considerarla “luz de día” —lo que no impide que se usen otras partes de la escala para referirse a la luz de tungsteno o algunas lámparas led), y la del sol al mediodía con cielo despejado es de 5200 K. La luz de los días nublados es más azul y es 6000 K o más, llegando incluso a los 11 000 K.
La física estadística dice que en un sistema termodinámico la energía contenida por las partículas es proporcional a la temperatura absoluta, siendo la constante de proporcionalidad la constante de Boltzmann. Por eso es posible determinar la temperatura de unas partículas con una determinada energía, o calcular la energía de unas partículas a una determinada temperatura. Esto se hace a partir del denominado principio o teorema de equipartición. El principio de equipartición establece que la energía de un sistema termodinámico es:
tempretaura 1
  • kB es la constante de Boltzmann
  • T es la temperatura expresada en kelvin
  •  n es el número de grados de libertad del sistema (por ejemplo, en sistemas monoatómicos donde la única posibilidad de movimiento es la traslación de unas partículas respecto a otras en las tres posibles direcciones del espacio, n es igual a 3).
Grado Fahrenheit
El grado Fahrenheit (representado como °F) es una escala de temperatura propuesta por Daniel Gabriel Fahrenheit en 1724. La escala establece como las temperaturas de congelación y ebullición del agua, 32 °F y 212 °F, respectivamente. Determinó tres puntos de temperatura. El punto cero está determinado al poner el termómetro en una mezcla de hielo, agua y cloruro de amonio. Éste es un tipo de mezcla frigorífica, que se estabiliza a una temperatura de 0 °F. Se pone luego el termómetro de alcohol o mercurio en la mezcla y se deja que el líquido en el termómetro obtenga su punto más bajo. El segundo punto es a 32 °F con la mezcla de agua y hielo, esta vez sin sal. El tercer punto, los 96 °F, es el nivel del líquido en el termómetro cuando se lo pone en la boca o bajo el brazo (en la axila). Fahrenheit notó que al utilizar esta escala el mercurio podía hervir cerca de los 600 grados.
Esta escala se utilizaba en la mayoría de los países anglosajones para todo tipo de uso. Desde la década de 1960 varios gobiernos han llevado a cabo políticas tendientes a la adopción del sistema internacional de unidades y su uso fue desplazado. Sin embargo, en los Estados Unidos sigue siendo utilizada por la población para usos no científicos y en determinadas industrias muy rígidas, como la del petróleo. Además, se utiliza esta escala en los informes meteorológicos y en gastronomía.
Para uso científico se usaba también una escala absoluta, la escala de Rankine, que fijaba el 0 al cero absoluto de forma análoga a lo que ocurre en la escala kelvin.
Grados Celcius
El grado Celsius (símbolo °C) es la unidad termométrica cuyo 0 se ubica 0,01 grados por debajo del punto triple del agua y su intensidad calórica equivale a la del kelvin.
El grado Celsius pertenece al Sistema Internacional de Unidades, con carácter de unidad accesoria, a diferencia del kelvin, que es la unidad básica de temperatura en dicho sistema.
Anders Celsius definió su escala en 1742 considerando las temperaturas de ebullición y de congelación del agua, asignándoles originalmente los valores 0 °C y 100 °C, respectivamente (de manera que más caliente resultaba en una menor temperatura); fueron Jean-Pierre Christin (1743)   y Carlos Linneo (1745)3 quienes invirtieron ambos puntos más tarde.   El método propuesto, al igual que el utilizado en 1724 para el grado Fahrenheit y el Grado Rømer de 1701, tenía la ventaja de basarse en las propiedades físicas de los materiales. William Thomson (luego Lord Kelvin) definió en 1848 su escala absoluta de temperatura en términos del grado Celsius. En la actualidad el grado Celsius se define a partir del kelvin del siguiente modo:

tempretaura 2
Los intervalos de temperatura expresados en °C y en kelvins tienen el mismo valor.
La escala de Celsius es muy utilizada para expresar las temperaturas de uso cotidiano, desde la temperatura del aire a la de un sinfín de dispositivos domésticos (hornos, freidoras, agua caliente, refrigeración, etc.). También se emplea en trabajos científicos y tecnológicos, aunque en muchos casos resulta obligado el uso de la escala de Kelvin
ESCAALA
El punto triple del agua es a 273,16 K, es decir, 0,01 °C.
La magnitud de un grado Celsius es equivalente a la magnitud de un Kelvin; en otras palabras, una diferencia de temperaturas tiene el mismo valor numérico expresada en grados Celsius que en Kelvin:
CELCIUS
La conversión de grados Celsius a grados Fahrenheit se obtiene multiplicando la temperatura en Celsius por 1,8 y sumando 32, esto da el resultado:
FARENHEITH
Para convertir Fahrenheit a Celsius:
FEREN CELCIUS
La escala Celsius es una escala de temperatura que asigna el valor cero (0 °C) al agua en proceso de fusión, y el valor cien (100 °C) al agua en proceso de ebullición.
De escala Fahrenheit a escala Kelvin:
KELVINDe escala Kelvin a escala Fahrenheit
F K
Grado Rankine
Se denomina Rankine (símbolo R) a la escala de temperatura que se define midiendo en grados Fahrenheit sobre el cero absoluto, por lo que carece de valores negativos. Esta escala fue propuesta por el físico e ingeniero escocés William Rankine en 1859.
El grado Rankine tiene su punto de cero absoluto a −459,67 °F, y los intervalos de grado son idénticos al intervalo de grado Fahrenheit.
Captura
Cero Rankine (0 R) equivalen a −273,15 °C o 0 K. Para convertir de grados Rankine a Kelvin se multiplica por un factor de 9/5:
Captura1
Usado comúnmente en EE.UU. como medida de temperatura termodinámica. Aunque en la comunidad científica las medidas son efectuadas en Sistema Internacional de Unidades, por tanto la temperatura es medida en kelvin (K).
Clases de Termometro
imagesimages




















Escalas Termométricas

Se toman por acuerdo como puntos fijos el punto de fusión del hielo y el punto de ebullición del agua. Una escala termométrica vendrá definida por los valores de temperatura asignados a los dos puntos, aceptando una variación lineal de la magnitud termométrica con la temperatura.


ESCALA CELSIUS O CENTIGRADA

El grado Celsius, (símbolo , °C en texto plano), es la unidad creada por Anders Celsius en 1742 para su escala de temperatura.
El grado Celsius pertenece al Sistema Internacional de Unidades, con carácter de unidad accesoria, a diferencia del kelvin que es la unidad básica de temperatura en dicho sistema.
Celsius definió su escala en 1742 considerando las temperaturas de congelación y ebullición del agua, asignándoles originalmente los valores 100 °C y 0 °C respectivamente (de manera que más calienteresultaba en una menor temperatura); fue Linneo quien invirtió ambos puntos un par de años más tarde. El método propuesto, al igual que el utilizado en 1724 para el grado Fahrenheit y el Grado Rømer de 1701, tenía la ventaja de basarse en las propiedades físicas de los materiales. William Thomson (luego Lord Kelvin) definió en 1848 su escala absoluta de temperatura en términos del grado Celsius. En la actualidad el grado Celsius se define a partir del kelvin del siguiente modo:
Los intervalos de temperatura expresados en °C y en kelvins tienen el mismo valor.
La escala de Celsius es muy utilizada para expresar las temperaturas de uso cotidiano, desde la temperatura del aire a la de un sin fín de dispositivos domésticos (hornos, freidoras, agua caliente, refrigeración, etc.). También se la utiliza en trabajos científicos y tecnológicos, aunque en muchos casos resulta obligada la utilización de la escala de Kelvin.

ESCALA KELVIN
El kelvin (antes llamado grado Kelvin), simbolizado como K, es la unidad detemperatura de la escala creada por William Thomson, Lord Kelvin, en el año 1848, sobre la base del grado Celsius, estableciendo el punto cero en el cero absoluto(−273,15 °C) y conservando la misma dimensión. Lord Kelvin, a sus 24 años introdujo la escala de temperatura termodinámica, y la unidad fue nombrada en su honor.
Es una de las unidades del Sistema Internacional de Unidades y corresponde a una fracción de 1/273,16 partes de la temperatura del punto triple del agua. Se representa con la letra K, y nunca "°K". Actualmente, su nombre no es el de "grados kelvin", sino simplemente "kelvin". Coincidiendo el incremento en un grado Celsius con el de un kelvin, su importancia radica en el 0 de la escala: la temperatura de 0 K es denominada 'cero absoluto' y corresponde al punto en el que las moléculas y átomos de un sistema tienen la mínima energía térmica posible. Ningún sistema macroscópico puede tener una temperatura inferior. A la temperatura medida en kelvin se le llama "temperatura absoluta", y es la escala de temperaturas que se usa en ciencia, especialmente en trabajos de física oquímica.
También en iluminación de vídeo y cine se utilizan los kelvin como referencia de la temperatura de color. Cuando un cuerpo negro es calentado emitirá un tipo de luz según la temperatura a la que se encuentra. Por ejemplo, 1.600 K es la temperatura correspondiente a la salida o puesta del sol. La temperatura del color de una lámpara de filamento de tungsteno corriente es de 2.800 K. La temperatura de la luz utilizada en fotografía y artes gráficas es 5.000 K y la del sol al mediodía con cielo despejado es de 5.200 K. La luz de los días nublados es más azul, y es de más de 6.000 K.


ESCALA FARENHEIT
El grado Fahrenheit (representado como °F) es una escala de temperatura propuesta por Daniel Gabriel Fahrenheit en 1714. La escala establece como las temperaturas de congelación y evaporación del agua, 32 °F y 212 °F, respectivamente. El método de definición es similar al utilizado para el grado Celsius (°C).


CALOR
El calor es la transferencia de energía entre diferentes cuerpos o diferentes zonas de un mismo cuerpo que se encuentran a distintastemperaturas. Este flujo siempre ocurre desde el cuerpo de mayor temperatura hacia el cuerpo de menor temperatura, ocurriendo la transferencia de calor hasta que ambos cuerpos se encuentren enequilibrio térmico (ejemplo: una bebida fría dejada en una habitación se entibia).
La energía puede ser transferida por diferentes mecanismos, entre los que cabe reseñar la radiación, la conducción y la convección, aunque en la mayoría de los procesos reales todos se encuentran presentes en mayor o menor grado.
La energía que puede intercambiar un cuerpo con su entorno depende del tipo de transformación que se efectúe sobre ese cuerpo y por tanto depende del camino. Los cuerpos no tienen calor, sinoenergía interna. El calor es parte de dicha energía interna (energía calorífica) transferida de un sistema a otro, lo que sucede con la condición de que estén a diferente temperatura.
La energía existe en varias formas. En este caso nos enfocamos en el calor, que es la forma de la energía que se puede transferir de un sistema a otro como resultado de la diferencia de temperatura.

ENERGIA
El término energía (del griego νέργεια/energeia, actividad, operación; νεργóς/energos=fuerza de acción o fuerza trabajando) tiene diversas acepciones y definiciones, relacionadas con la idea de una capacidad para obrar, transformar o poner en movimiento. En física, «energía» se define como la capacidad para realizar un trabajo. En tecnología y economía, «energía» se refiere a un recurso natural (incluyendo a su tecnología asociada) para extraerla, transformarla, y luego darle un uso industrial o económico.






Concepto de dilatación

La dilatación en Física es el aumento de un cuerpo en su volumen, éste se hace más grande (más largo o ancho, o ambas cosas).
La dilatación puede ocurrir por una variación de temperatura a presión constante. Esto se conoce como dilatación térmica. Cuando un cuerpo sólido (sobre todo plano) se calienta, se dilata en largo y ancho aumentando su superficie, pues el calor otorga a sus moléculas energía, lo que las hace vibrar intensamente, necesitando entre ellas un espacio mayor. El coeficiente medio de dilatación superficial es el aumento de su unidad de superficie, al aumentar su temperatura en un grado. La letra griega gamma es la que lo representa. La dilatación lineal (aumento de longitud) en un cuerpo alargado, es proporcional al aumento de temperatura en pequeños intervalos La dilatación de los gases es mucho mayor que la que sufren los líquidos o los sólidos.
El agua presenta particularidades en su dilatación, pues al solidificarse, aumenta su volumen y disminuye su densidad. Cuando alcanza los 10 º C se equipara con otros fluidos su curva de dilatación.
En Biología se conoce como dilatación de las pupilas, a cuando éstas se agrandan, ya sea por la falta de luz o a consecuencia de emociones, medicamentos o drogas, actuando sobre ellas el sistema nervioso simpático.
En el parto, el período de dilatación es el que antecede a la expulsión del feto, que comienza con las contracciones uterinas, y al principio es lenta. Cuando ya hay 5 cm. de dilatación, ésta se hace más rápida, hasta llegar a los 10 cm. en que existe ya dilatación completa.

Comentarios

Entradas populares de este blog

Estado de agregación, Elasticidad, Hidrostatica, Presion, Presion Hidrostatica, Prensa Hidraulica, Densidad y Peso Especifico y Empuje

cantidades vectoriales y escalares